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Molecular Evolution

* Using biomolecules to understand
evolutionary history and evolutionary
processes

* Phylogenetic trees are critical for studying
molecular evolution, because many biological
phenomena of interest can be modeled as
bifurcating processes



Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.

Consider an ancestral lineage
(e.g., descendants from one HIV virus)




Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.

«—— One lineage
splits into two




Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.

<—— There are
now two HIV
lineages




Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.

Some lineages
become extinct

.

Lineages continue
to diversify
through time




Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.
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‘ The relationships
among lineages
produce a
phylogenetic tree




Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.
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If samples are
taken at this
point in time...
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Phylogeny
Evolutionary relationships among lineages,
such as genes, individuals, populations, species, etc.
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...then (hopefully, with
appropriate data,
models of evolution,
and methods of
analysis) the
reconstructed
phylogenetic tree will
look like this
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Major Uses of Phylogenetic Trees

The relationships are often informative about evolution
(where genes came from, how and where viruses are
transmitted, the origins of particular structures or
processes)

Trees allow estimation of time for various evolutionary
events

Trees facilitate analysis of evolutionary processes, such as
selection, gene flow, and speciation

Trees allow appropriate comparative biology (identify
appropriate comparisons)

Trees are informative about ancestral states and state
transitions
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29t Workshop on Molecular Evolution

Focus:
70% models and methods of analysis
10% on data acquisition
20% on applications

Why this emphasis on models and
methods of analysis?



Where were/are the problems?

1970s and 1980s: we badly needed more data

1990s and 2000s: we badly needed better
sampling of taxa (also more loci)

In the 2010s, we are finally getting some
pretty good data sets. But are our models and
methods up to the task of analyzing the data?

Are we over-confident in the conclusions from
existing models and methods?



What are the sources of error in statistical inference?

Population
Draw sample from . :
Stochastic sampling error
(unknown) true (decreasing with increased sample size)
distribution 9 P
Sample Estimate of true distribution:
Better with more data
Inferences about S . . del :
true distribution ystematic error in model assumptions
(does not decrease with increasing sample size)
Inference Our estimate of the true distribution

(includes sampling error and systematic error)




True (unknown) distribution
Sampling (data acquisition)

Data

Model/assumptions (methods of analysis)

Inference

Some people seem to think that with enough data (say, whole genomes from
everything), we can stop worrying about inference error. Why are they mistaken?



True (unknown) distribution

If sample is large enough, sampling error
may indeed approach 0%

Data

But even if we have 100% confidence that our data are
representative of the underlying population, we may
still have 0% confidence in our model assumptions

Inference



True (unknown) distribution

If sample is large enough, sampling error
may approach 0%

Data

Even if we have 100% confidence that our data are
representative of the underlying population, we may
still have 0% confidence in our model assumptions

Inference

(100% confidence in sample) X (0% confidence in model assumptions) =
0% confidence in inference



A BC D EF G

True evolutionary history and processes
(unknown)

Universe of possible genomes of A-G, given true phylogeny and evolutionary processes

!

Samples drawn from genomes A-G (subject to sampling error, decreasing with increasing data)
Estimate phylogeny, based on model assumptions
(subject to systematic error)
ABC DEF G

If we collect enough data, we will have
100% bootstrap proportions or Bayesian
posterior probabilities for our inference.



A BC D EF G

True evolutionary history and processes
(unknown)

!

Universe of possible genomes of A-G, given true phylogeny and evolutionary processes

!

Samples drawn from genomes A-G (subject to sampling error, decreasing with increasing data)

Estimate phylogeny, based on model assumptions
(subject to systematic error)

ABC D EF G

If we collect enough data, we will have
100% bootstrap proportions or Bayesian
posterior probabilities for our inference.

That doesn’t mean it is correct



Sampling error: Relatively easy to assess

Bootstrapping, Bayesian posterior probabilities
(This is what most people do, because it is easy.)

Systematic error: Harder to assess

Examine sensitivity to model assumptions;
develop and compare more complex models
(This is what many people ignore, because it is hard)



What do we mean by more data?
More sequences, or more taxa?

* Yes: both are very important

e Early days of molecular systematics: very short

sequences, very few genes, lots of sampling
error

Emphasis was on increasing sequence length, because
we didn’t have enough data for our simple models
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Probability of finding correct tree
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Angiosperm phylogeny

2% divergence
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Model: Kimura 2-parameter, alpha/beta = 2, gamma distribution

of rate heterogeneity with shape parameter = 0.5

Figure from Hillis, 1996. Inferring complex phylogenies. Nature 383:130-131.
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Dense sampling of taxa greatly
reduces systematic error

* Using many loci is also critical, to sort out
differences between gene trees and species
trees

e But even with lots of genes, poor taxon
sampling results in large systematic error
(fewer taxa means more reliance on overly
simplistic models to infer multiple changes
along long branches)



Where are we today?

Many studies use a large sample of genes
Many studies sample taxa very broadly
(Often with LOTS of missing data)

Sampling error tends to be very low

Bootstrap proportions and BPPs are often near
100%

But are we over-confident in our model
assumptions? (100 x 0 = 0)



Anguimorpha

Iguania

Serpentes

phenodon punctatus

Dibamidae

Lacertoidea

Scincomorpha
Data from Pyron et al., 2014; Figure from Wright et al., 2015



Anguimorpha

Iguania
Good:

eAbout 4,000 species
eMultiple nuclear and
mitochondrial genes

Serpentes

phenodon punctatus

Dibamidae But worrisome:
*81% missing data
eBiases in missing data
(most taxa only have
fragments of mtDNA)

Lacertoidea
How do biases in missing
data affect our models?

Scincomorpha

Data from Pyron et al., 2014; Figure from Wright et al., 2015



Anguimorpha

Iguania

Tree conflicts with
morphology, which
places iguanians
phenodon punctatus as the SiSter group
y/ Dibamidae of remaining
squamates.

How confident
should we be
in this tree?

Lacertoidea

Scincomorpha

Data from Pyron et al., 2014; Figure from Wright et al., 2015






All the arguments
between morphologists
and molecular systematists
concern branches in this

part of the tree.

Anguimorpha

Iguania

Serpentes

phenodon punctatus

~ Dibamidae

Gekkota
Lacertoidea

Are our models good enough
to solve problems like this,
with these data?

Scincomorpha

Data from Pyron et al., 2014; Figure from Wright et al., 2015



All the arguments
between morphologists
and molecular systematists
concern branches in this

part of the tree.

Anguimorpha

Iguania

Serpentes

phenodon punctatus

Dibamidae

Gekkota
Lacertoidea

What about our evolutionary
inferences from these trees?

Scincomorpha

Data from Pyron et al., 2014; Figure from Wright et al.,2015
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Anguimorpha

Iguania

phenodon punctatus

Dibamidae

Lacertoidea

eLots of missing data
eHighly complex solution space Scincomorpha
Data from Pyron et al., 2014; Figure from Wright et al., 2015



Proportion of oviparous taxa sampled

Best tree so far (improvement of >83,796 In-L units)
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Figure from Wright et al., 2015



Parameter of model (e.g., a parameter of I distribution)




Parameter of model (e.g., a parameter of I distribution)
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Assumed or estimated value of parameter leads to inference Red.
How confident should we be in answer Red?



Parameter of model (e.g., a parameter of I distribution)

N

Assumed or estimated value of parameter leads to inference Red.
How confident should we be in answer Red?

1. We should be concerned with the sampling error that led to
this estimated value of a. (This is all that many people do).



Parameter of model (e.g., a parameter of I distribution)
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Assumed or estimated value of parameter leads to inference Red.
How confident should we be in answer Red?

1. We should be concerned with the sampling error that led to
this estimated value of a. (This is all that many people do).

2. We should be concerned with the sensitivity of the answer to
this parameter value.

Parameter of model (e.g., a parameter of I distribution)
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Assumed or estimated value of parameter leads to inference Red.
How confident should we be in answer Red?

1. We should be concerned with the sampling error that led to
this estimated value of a. (This is all that many people do).

2. We should be concerned with the sensitivity of the answer to
this parameter value.

Parameter of model (e.g., a parameter of I distribution)

] y j o0

Reasonable values of a




Ethics of Data Presentation and
Analysis

 Assume you analyze your data with multiple
models, methods, or parameter settings:

All the methods, models, Exciting, surprising

and parameter settings result (=publication
you examined in Science or Nature!)

(or should have examined)

What do you publish?



Ethics of Data Presentation and
Analysis

 Assume you analyze your data with multiple
models, methods, or parameter settings:

Exciting, surprising
result (=publication
in Science or Nature!)

All the methods, models,

and parameter settings
you examined

(or should have examined)

What do you publish?



How can our models be improved?

* Pretty much done:

Simple reversible models of nucleotide
substitution under stationary conditions (GTR
family of models) and bifurcating evolutionary

lineages



How can our models be improved?

Still lots of work to do:

* Non-stationary models

* Codon biases

* |nteractions among sites and genes

* Orthology, paralogy, and xenology

* Alignment within homologous genes

* Reticulation, lateral gene transfer

 Models for morphology and non-sequence data
 Methods for assessing confidence in our solutions



Pretty Damn
Good

Inadequate

1970 1980 1990 2000 2010 2020



Sequence length and number of loci

Nex-Gen sequencing

Pretty Damn
Good
Automated
sequencing
PCR
Sanger
sequencing
Inadequate

1970 1980 1990 2000 2010 2020



Taxon sampling
(at least for some genes in some taxa)

Pretty Damn
Good

Inadequate

1970 1980 1990 2000 2010 2020



Number of species

Amphibian species and sequences

Projected
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Models of sequence evolution

Pretty Damn
Good
GTR fimily
Inadequate

1970 1980 1990 2000 2010 2020



Pretty Damn Loci
Good Taxa

Models

,/’;;7—7

Inadequate

1970 1980 1990 2000 2010 2020



Do we need more data, or better
analyses (models and methods)?

The short answer is “yes, we need both”
1970s and 1980s: we badly needed more data

1990s and 2000s: we badly needed denser
sampling of taxa (also more loci)

In the 2010s, we are finally getting some pretty
good data sets. But are our models up to the task
of analyzing the data we have?

Are we over-confident in the conclusions from
the models that we have?




Ethics of Data Presentation and
Analysis

* All data, method descriptions, scripts, and
programs must be publicly available in a way

that all your analyses can be repeated,
checked, and extended



Ethics of Data Presentation and
Analysis

— Not just sequences in GenBank and a statement
that you used a particular program for analysis!



Ethics of Data Presentation and
Analysis

— Include alignments, parameter settings, scripts
with program settings, and information on the
range of methods, models, and parameter settings
examined.



Ethics of Data Presentation and
Analysis

* Where can you put all this information?

— Most journals allow online Supplementary
Information

— There may be discipline specific data repositories
(such as TreeBase for phylogenetic analyses; http://
http://treebase.org)

— Public, archival databases such as Dryad, a digital data
repository (http://datadryad.org/)

— Individual websites are not the best solution, since
long-term access and archiving are serious problems



An Introduction to Phylogenetic
Methods

* An optimality criterion defines how we
measure the fit of data to a given solution

* Tree-searching is a separate step; this is how
we search through possible solutions (which
we then evaluate with the chosen optimality
criterion)



Phylogenetic methods

Three main classes of optimality criteria:

eNonparametric methods: parsimony and
related approaches

eSemi-parametric methods: pairwise distance
approaches

eParametric methods: Likelihood and Bayesian
approaches



Advantages of each

Parsimony
methods

Pairwise distance
methods

Likelihood-based
methods

*\Widely applicable to many discrete data types

(often used to combine analyses of different data types)
eRequires no explicit model of evolutionary change
eComputationally relatively fast
eRelatively easy interpretation of character change
ePerform well with many data sets

eCan be used with pairwise distance data
(e.g., non-discrete characters)
eCan incorporate an explicit model of evolution in
estimation of pairwise distances
eComputationally relatively fast
(especially for single-point estimates)

eFully based on explicit model of evolution

*Most efficient method under widest set of conditions

eConsistent (converges on correct answer with
increasing data, as long as assumptions are met)

*Most straightforward statistical assessment of
results; probabilistic assessment of ancestral
character states



Disadvantages of each

P3 rsimony *No explicit model of evolution; often less efficient
eNonparametic statistical approaches for assessing
results often have poorly understood properties
eCan provide misleading results under some fairly

common conditions
*Do not provide probablistic assessment
of alternative solutions

methods

Pairwise distance *Model of evolution applied locally (to pairs of taxa),
methods rather than globally
eStatistical interpretation not straightforward
eCan provide misleading results under some fairly
common conditions (but not as sensitive as parsimony)
*Do not provide probablistic assessment
of alternative solutions

Likelihood-based eRequire an explicit model of evolution, which may
not be realistic or available for some data types

methods eComputationally most intense



Parsimony Criterion

Under the parsimony criterion, the optimal tree (the
shortest or minimum-length tree) is the one that
minimizes the sum of the lengths of all characters in terms
of evolutionary steps (a step is a change from one
character-state to another).

For a given tree, find the length of each character, and
sum these lengths; this is the tree length.

The tree with the minimum length is the most-
parsimonious tree.

The most parsimonious tree provides the best fit of the
data set under the parsimony criterion.



Optimal versus True Tree

There is no guarantee that any criterion
will necessarily identify the “true” tree.
These are simply criteria for choosing
which tree best fits a dataset



Optimization

* In parsimony, this involves minimizing the number
of changes of a character across a tree (the length
of the character)

* The optimization involves estimating the state at
all internal nodes.

* Itis possible for a character to have more than
one best optimization.



{C}

{CG}

{A}

{GA} 1

{CGA} |1
{G}

{ACG} |1

1A}

Downpass (postorder traversal)

Length =4



{C}—> C

1A}

Up-Pass (preorder traversal)

{A} =—> A

{GA} —> G

{CGA} —> G
{G}—> G

{CG}—> G (orCorA)

{ACG} —> A

Length =4



G (orCorA)









Weighted Parsimony

* Transformations among character-states do
not need to be weighted equally

e Can account for different weights between
transitions and transversions, for example

* A way to approximately incorporate some
aspects of models of evolution



Pairwise distances

Distances summarize character differences between objects
(terminals, taxa).

Pairwise distances are computationally quick to calculate.

Character differences cannot be recovered from distances, because
different combinations of character states can yield the same
distance.

Characters cannot be compared individually, as in discrete character
analyses.

The distances in a matrix are not independent of each other, and
errors are often compounded in fitting distances to a tree.



Characters
Taxa 1 2 3 4 5
one A G C G A
two A G C G T
three C T C G T
four C T C A A

Start with a data matrix of the usual form



Characters
Taxa 1 2 3 4 5
one A G C G A -
two | A | G | ¢ | 6 | T ]
three C T C G T
four C T C A A

one | two | three | four
one .2 .6 .6
two 4 .8
three 4
four

Compute a distance matrix of observed proportional distances




Intuition of sequence divergence vs evolutionary distance

/Fhis can't be right!
1.0

p-dist

Evolutionary distance
0.0 Y >» OO0




Sequence divergence vs evolutionary distance

1.0

e

p-dist

the p-dist
“levels off”

0.0

Evolutionary distance

>» 00




Characters
Taxa 1 2 3 4 5
one A G C G A
two A G C G T
three C T C G T
four C T C A A

Transform the distance matrix

(d;) into a matrix of evolutionary
(corrected) distances, using a
model of evolution to account

for superimposed changes
(reversal, convergences,

multiple changes, etc.). This is
where the parametric model is
applied (to many separate 2-taxon
“trees”).

one | two | three | four
one .2 .6 .6
" two 4 .8
three 4
four
Model of evolution
v
one | two | three | four
one .21 .63 .63
two .42 .85
three .42

four




three

four

Find the tree and branch lengths that result in the

best match (using an objective function) between the
corrected distance matrix (dij) and the patristic distance
matrix (p;) (the matrix of path-length distances)

0.20 one
0.21 0.105
0.105 > two
0.32 one | two | three | four
one .21 .63 .63
one | two | three | four
two .42 .85
one - .21 515 | .635 —
three .42
two - 515 .635
four
three - .52
four




Optimality Criteria using Pairwise
Distances

 Two commonly used objective functions:
— Fitch-Margoliash
— Minimum Evolution

* The general strategy is to find a set of patristic
distances (path-length distances) for the branches
so as to minimize the difference between the
evolutionary distances and the patristic distances.



Pairwise Distance Methods

* Fitch-Margoliash family

Fit= ) o,

(04

d;; — Py

I<i< j<n

| =taxon i Common weights
j=taxon j, upton w; =1
d = evolutionary distance w; = 1/d;
p = patristic or tree distance w; = 1/d?,
w = weight
Exponent: 2 = least squares

1 = absolute difference




Pairwise Distance Methods

* Minimum Evolution

Fit= ) o,

I<i< j<n

(04

d;; — Py

1. Usew =1 and alpha =2 to fit branch lengths /
2. Pick the tree that minimizes the sum of the branch lengths, L, over all
branches (this is parsimony in spirit):



Algorithmic Methods for Distance
Trees

* UPGMA--unweighted pair-group method
using arithmetic means

(not widely used anymore...assumes
equal rates of change)

e Neighbor-joining--an approximation
method for the minimum evolution
criterion



Likelihood

Imagine that we are given a coin, and flip it
n times, getting h heads: these are our data
(D)

We can explore various hypotheses (H)
about the coin, which may have implicit and
explicit components

— The coin has a p, probability of landing on heads
— The coin has a heads side and a tails side

— Successive flips of the coin are independent

— The flipping process is fair

— efc.



Coin flipping

The likelihood (L) is proportional to the probability
of observing our data, given our hypothesis:

L(H | D)< P(D|H)

The probability of getting the outcome h heads on n
flips is given by the binomial distribution:

P(h,n | ph) — (Zj(ph)h(l — ph)n_h

(Likelihood score)



Coin flipping

The expression (n
h

coefficients, or the number of different ways to (for
example) get 4 heads in 10 flips

j gives the binomial

We can ignore that term to look at the probability of
a particular sequence of heads and tails (to make it
more like the case of a particular observed
sequence of nucleotides)



Coin flipping

* Let's try applying this to some data

— Dataset 1 : A particular sequence of
HTHTTTHTTH

 Assume a particular hypothesis
— Tryp,=0.5

« This gives us a likelihood score of

L(p, =0.510bs)=(0.5)*(0.5)° = 0.000976563



Coin flipping

 What does the likelihood score tell us about the
likelihood of our hypothesis? In isolation, nothing,
because the score is dependent on the particular
data set. The score will get smaller as we collect
more data (flip the coin more times).

«  Only the relative likelihood scores for various

hypotheses, evaluated using the same data, are
useful to us.

. What are some other models?
L(p, =0.610bs) = (0.6)4(0.4)6 = (0.000530842

L(p, =0.41lobs)=(04)*(0.6)° =0.001194394



The likelihood surface

Likelihood
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The log likelihood surface

In Likelihood

Pn

Dataa HTHTTTHTTH



Other data

In Likelihood
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Likelihood

Likelihood (H|D) is proportional to P (D|H)
Components of the hypothesis can be explicit and
implicit

Only relative likelihoods are important in evaluating
hypotheses

The point on the likelihood curve that maximizes the
likelihood score (the MLE) is our best estimate given the
data at hand

Likelihood scores shouldn’t be compared between
datasets

More data lead to more peaked surfaces (i.e., better
ability to discriminate among hypotheses)



Likelihood in Phylogenetics

In phylogenetics, the data are the observed characters (e.g., DNA
sequences) as they are distributed across taxa

The hypothesis consists of the tree topology, a set of specified branch
lengths, and an explicit model of character evolution.

Calculating the likelihood score for a tree requires a very large number
of calculations



Bayesian Approaches

e Take prior information into account

P(B|A) P(A)
P(B)

(Bayes Theorem)

P(A|B) =

Reverend Thomas Bayes, 1701-1761




Bayesian Approaches

e Take prior information into account

P(B|A) P(A)
P(B)

P(A|B) =

Posterior probability



Bayesian Approaches

e Take prior information into account

P(B|A) |P(A)
P(B)

P(A|B) =

The support that B provides for A



Bayesian Approaches

e Take prior information into account

P(A|B) =

P(B|A)

P(A)

P(B)

Prior information about A
(the initial expectation for A)



Bayesian Approaches

* An example:

T'M NEAR ‘IPICKEDUP
THEOCEPN

p(IPICKEDUP rnncm)p(mm
A SEASHELL. | THE OcEAN) I\ THE ocEAN

(528

~
™ v

-~

SPLOO%-‘
&

STANSTICALLY SPEAKING, IF YOU PICK UP A
SEASHELL AND DOV HOLD IT TOYOUR ERR,
YOU (AN PROBABLY HEAR THE OCEAN.




What determines the accuracy of
phylogenetic estimates?
e Optimality criterion (likelihood-based methods

have best performance, as long as
assumptions of model are met)



What determines the accuracy of
phylogenetic estimates?

 Model selection (finding an appropriate model
of evolution for the data at hand)



What determines the accuracy of
phylogenetic estimates?

 Thoroughness of tree search (finding best
solutions)



What determines the accuracy of
phylogenetic estimates?

 Sampling density of genes (more genes provide
more information, and allow resolution of species
trees from gene trees)



What determines the accuracy of
phylogenetic estimates?

e Sampling density of taxa (more thorough taxon
sampling produces better estimates of parameters and
results in better estimates of trees)






