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Molecular	Evolu7on	

•  Using	biomolecules	to	understand	
evolu7onary	history	and	evolu7onary	
processes	

•  Phylogene7c	trees	are	cri7cal	for	studying	
molecular	evolu7on,	because	many	biological	
phenomena	of	interest	can	be	modeled	as	
bifurca7ng	processes	



Molecular	Evolu7on	Workshop	
at	MBL	begins	
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Major	Uses	of	Phylogene7c	Trees	

•  The	rela7onships	are	oGen	informa7ve	about	evolu7on	
(where	genes	came	from,	how	and	where	viruses	are	
transmiJed,	the	origins	of	par7cular	structures	or	processes)	

•  Trees	allow	es7ma7on	of	7me	for	various	evolu7onary	events	
•  Trees	facilitate	analysis	of	evolu7onary	processes,	such	as	

selec7on,	gene	flow,	and	specia7on	
•  Trees	allow	appropriate	compara7ve	biology	(iden7fy	

appropriate	comparisons)	
•  Trees	are	informa7ve	about	ancestral	states	and	state	

transi7ons	
•  Trees	are	informa7ve	about	species	delimita7on	and	

biogeography	
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30th	Workshop	on	Molecular	Evolu/on	

Focus:		
70%	models	and	methods	of	analysis	

10%	on	data	acquisi7on	
20%	on	applica7ons	

Why	this	emphasis	on	models	and	
methods	of	analysis?	



Where	were/are	the	problems?	

•  1970s	and	1980s:	we	badly	needed	more	data	
•  1990s	and	2000s:	we	badly	needed	beJer	
sampling	of	taxa	(also	more	loci)	

•  In	the	2010s,	we	are	finally	ge^ng	some	
preJy	good	data	sets.	But	are	our	models	and	
methods	up	to	the	task	of	analyzing	the	data?		

•  Are	we	over-confident	in	the	conclusions	from	
exis7ng	models	and	methods?	



Draw sample from 
   (unknown) true
       distribution

            Stochastic sampling error
(decreasing with increased sample size)

Estimate of true distribution:
      Better with more data
           

Inferences about
 true distribution

       Systematic error in model assumptions
(does not decrease with increasing sample size)

         Our estimate of the true distribution
(includes sampling error and systematic error)

Popula7on	

Sample	

Inference	

What	are	the	sources	of	error	in	sta/s/cal	inference?	



True	(unknown)	distribu7on	

Data	

Model/assump7ons	(methods	of	analysis)	

Inference	

Sampling	(data	acquisi7on)		

Some	people	seem	to	think	that	with	enough	data	(say,	whole	genomes	from		
everything),	we	can	stop	worrying	about	inference	error.	Why	are	they	mistaken?	



True	(unknown)	distribu7on	

Data	

If	sample	is	large	enough,	sampling	error	
may	indeed	approach	0%	

But	even	if	we	have	100%	confidence	that	our	data	are		
representa7ve	of	the	underlying	popula7on,	we	may	
s7ll	have	0%	confidence	in	our	model	assump7ons	

Inference	



True	(unknown)	distribu7on	

Data	

Inference	

(100%	confidence	in	sample)	X	(0%	confidence	in	model	assump7ons)	=	
																																					0%	confidence	in	inference	

If	sample	is	large	enough,	sampling	error	
may	approach	0%	

Even	if	we	have	100%	confidence	that	our	data	are		
representa7ve	of	the	underlying	popula7on,	we	may	
s7ll	have	0%	confidence	in	our	model	assump7ons	



A			B		C					D				E			F						G	

Universe	of	possible	genomes	of	A-G,	given	true	phylogeny	and	evolu7onary	processes	

Samples	drawn	from	genomes	A-G	(subject	to	sampling	error,	decreasing	with	increasing	data)	

A			B		C					D				E			F						G	

Es7mate	phylogeny,	based	on	model	assump7ons	
												(subject	to	systema7c	error)	

If	we	collect	enough	data,	we	will	have	
100%	bootstrap	propor7ons	or	Bayesian		
posterior	probabili7es	for	our	inference.	

True	evolu7onary	history	and	processes	
																								(unknown)	



A			B		C					D				E			F						G	

Universe	of	possible	genomes	of	A-G,	given	true	phylogeny	and	evolu7onary	processes	

Samples	drawn	from	genomes	A-G	(subject	to	sampling	error,	decreasing	with	increasing	data)	

A			B		C					D				E			F						G	

Es7mate	phylogeny,	based	on	model	assump7ons	
												(subject	to	systema7c	error)	

If	we	collect	enough	data,	we	will	have	
100%	bootstrap	propor7ons	or	Bayesian		
posterior	probabili7es	for	our	inference.	

That	doesn’t	mean	it	is	correct	

True	evolu7onary	history	and	processes	
																								(unknown)	



Sampling	error:	Rela7vely	easy	to	assess	

	Bootstrapping,	Bayesian	posterior	probabili7es	
	(This	is	what	most	people	do,	because	it	is	easy.)	

Systema7c	error:	Harder	to	assess	

	Examine	sensi7vity	to	model	assump7ons;	
	develop	and	compare	more	complex	models	
	(This	is	what	many	people	ignore,	because	it	is	hard)	



What	do	we	mean	by	more	data?	
More	sequences,	or	more	taxa?	

•  Yes:	both	are	very	important	
•  Early	days	of	molecular	systema7cs:	very	short	
sequences,	very	few	genes,	lots	of	sampling	
error	

Emphasis	was	on	increasing	sequence	length,	because		
we	didn’t	have	enough	data	for	our	simple	models	



Hillis,	D.	M.,	J.	P.	Huelsenbeck,	and	D.	L.	Swofford.		1994.		Hobgoblin	of	Phylogene7cs?		Nature	369:363-364.		



Hillis,	D.	M.,	J.	P.	Huelsenbeck,	and	D.	L.	Swofford.		1994.		Hobgoblin	of	Phylogene7cs?		Nature	369:363-364.		



2% divergence

Model: Kimura 2-parameter, alpha/beta = 2, gamma distribution
of rate heterogeneity with shape parameter = 0.5

Angiosperm phylogeny 

Figure	from	Hillis,	1996.	Inferring	complex	phylogenies.	Nature	383:130-131.	
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Dense	sampling	of	taxa	greatly	
reduces	systema7c	error	

•  Using	many	loci	is	also	cri7cal,	to	sort	out	
differences	between	gene	trees	and	species	
trees	

•  But	even	with	lots	of	genes,	poor	taxon	
sampling	results	in	large	systema7c	error	
(fewer	taxa	means	more	reliance	on	overly	
simplis7c	models	to	infer	mul7ple	changes	
along	long	branches)	



Where	are	we	today?	

•  Many	studies	use	a	large	sample	of	genes	
•  Many	studies	sample	taxa	very	broadly	

•  (OGen	with	LOTS	of	missing	data)	

•  Sampling	error	tends	to	be	very	low	

•  Bootstrap	propor7ons	and	BPPs	are	oGen	near	
100%	

•  But	are	we	over-confident	in	our	model	
assump7ons?	(100	x	0	=	0)	



Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,	2015	



Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,	2015	

Good:	
•About	4,000	species	
•Mul7ple	nuclear	and	
			mitochondrial	genes	

But	worrisome:	
•81%	missing	data	
•Biases	in	missing	data	
(most	taxa	only	have	
fragments	of	mtDNA)	

How	do	biases	in	missing	
data	affect	our	models?	



Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,	2015	

Tree	conflicts	with	
morphology,	which	
places	iguanians	
as	the	sister	group	

of	remaining	
squamates.	

How	confident	
should	we	be	
in	this	tree?	





Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,	2015	

All	the	arguments	
between	morphologists	

and	molecular	systema7sts	
concern	branches	in	this	

part	of	the	tree.		

Are	our	models	good	enough	
to	solve	problems	like	this,	

with	these	data?	



Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,2015	

All	the	arguments	
between	morphologists	

and	molecular	systema7sts	
concern	branches	in	this	

part	of	the	tree.		

What	about	our	evolu7onary		
inferences	from	these	trees?	



Figure	from	Wright	et	al.,	2015	



Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,	2015	

•Lots	of	missing	data	
•Highly	complex	solu7on	space	



Pr
op

or
7o

n	
of
	o
vi
pa
ro
us
	ta

xa
	s
am

pl
ed

	

Propor7on	of	viviparous	taxa	sampled	

Best	tree	so	far	(improvement	of	>83,796	ln-L	units)	

Figure	from	Wright	et	al.,	2015	



0	 ∞	

Parameter	of	model	(e.g.,	α	parameter	of	Γ	distribu7on)	



0	 ∞	

Parameter	of	model	(e.g.,	α	parameter	of	Γ	distribu7on)	

Assumed	or	es7mated	value	of	parameter	leads	to	inference	 .	
													How	confident	should	we	be	in	answer	 ?	



0	 ∞	

Parameter	of	model	(e.g.,	α	parameter	of	Γ	distribu7on)	

Assumed	or	es7mated	value	of	parameter	leads	to	inference	 .	
													How	confident	should	we	be	in	answer	 ?	

1.  We	should	be	concerned	with	the	sampling	error	that	led	to	
this	es7mated	value	of	α.	(This	is	all	that	many	people	do).	
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Parameter	of	model	(e.g.,	α	parameter	of	Γ	distribu7on)	

Assumed	or	es7mated	value	of	parameter	leads	to	inference	 .	
													How	confident	should	we	be	in	answer	 ?	

1.  We	should	be	concerned	with	the	sampling	error	that	led	to	
this	es7mated	value	of	α.	(This	is	all	that	many	people	do).	

2.  We	should	be	concerned	with	the	sensi7vity	of	the	answer	to	
this	parameter	value.	
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Reasonable	values	of	α		



0	 ∞	

Parameter	of	model	(e.g.,	α	parameter	of	Γ	distribu7on)	

Assumed	or	es7mated	value	of	parameter	leads	to	inference	 .	
													How	confident	should	we	be	in	answer	 ?	

1.  We	should	be	concerned	with	the	sampling	error	that	led	to	
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Ethics	of	Data	Presenta/on	and	
Analysis	

•  Assume	you	analyze	your	data	with	mul7ple	
models,	methods,	or	parameter	se^ngs:	

Exci7ng,	surprising	
result	(=publica7on		
in	Science	or	Nature!)	

All	the	methods,	models,	
and	parameter	se^ngs	

you	examined	
(or	should	have	examined)	

What	do	you	publish?	



Ethics	of	Data	Presenta/on	and	
Analysis	

•  Assume	you	analyze	your	data	with	mul7ple	
models,	methods,	or	parameter	se^ngs:	

Exci7ng,	surprising	
result	(=publica7on		
in	Science	or	Nature!)	

All	the	methods,	models,	
and	parameter	se^ngs	

you	examined	
(or	should	have	examined)	

What	do	you	publish?	



How	can	our	models	be	improved?	

•  PreJy	much	done:		

				Simple	reversible	models	of	nucleo7de	
subs7tu7on	under	sta7onary	condi7ons	(GTR	
family	of	models)	and	bifurca7ng	evolu7onary	
lineages	



How	can	our	models	be	improved?	

S7ll	lots	of	work	to	do:	
•  Non-sta7onary	models	
•  Codon	biases	
•  Interac7ons	among	sites	and	genes	
•  Orthology,	paralogy,	and	xenology	
•  Alignment	within	homologous	genes	
•  Re7cula7on,	lateral	gene	transfer	
•  Models	for	morphology	and	non-sequence	data	
•  Methods	for	assessing	confidence	in	our	solu7ons	



1970										1980										1990										2000										2010										2020	

Inadequate	

PreJy	Damn	
Good	



1970										1980										1990										2000										2010										2020	

Inadequate	

PreJy	Damn	
Good	

Sequence	length	and	number	of	loci	

Sanger	
sequencing	

PCR	

Automated	
sequencing	

Nex-Gen	sequencing	



1970										1980										1990										2000										2010										2020	

Inadequate	

PreJy	Damn	
Good	

Taxon	sampling		
(at	least	for	some	genes	in	some	taxa)	
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From	Hillis,	2010.	in	Evolu7on	Since	Darwin:	The	First	150	Years,	Sinauer.	



0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 

N
u

m
b

e
r 

o
f 

sp
e
ci

e
s 

Year 

Amphibian species and sequences 

Described species	

Species with sequences	

in GenBank	



1970										1980										1990										2000										2010										2020	

Inadequate	

PreJy	Damn	
Good	

GTR	family	

Models	of	sequence	evolu7on	
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Do	we	need	more	data,	or	beJer	
analyses	(models	and	methods)?	

•  The	short	answer	is	“yes,	we	need	both”	
•  1970s	and	1980s:	we	badly	needed	more	data	
•  1990s	and	2000s:	we	badly	needed	denser	
sampling	of	taxa	(also	more	loci)	

•  In	the	2010s,	we	are	finally	ge^ng	some	preJy	
good	data	sets.	But	are	our	models	up	to	the	task	
of	analyzing	the	data	we	have?		

•  Are	we	over-confident	in	the	conclusions	from	
the	models	that	we	have?	



Ethics	of	Data	Presenta/on	and	
Analysis	

•  All	data,	method	descrip7ons,	scripts,	and	
programs	must	be	publicly	available	in	a	way	
that	all	your	analyses	can	be	repeated,	
checked,	and	extended	



Ethics	of	Data	Presenta/on	and	
Analysis	

•  All	data,	method	descrip7ons,	scripts,	and	
programs	must	be	publicly	available	in	a	way	
that	all	your	analyses	can	be	repeated,	
checked,	and	extended	
– Not	just	sequences	in	GenBank	and	a	statement	
that	you	used	a	par7cular	program	for	analysis!	



Ethics	of	Data	Presenta/on	and	
Analysis	

•  All	data,	method	descrip7ons,	scripts,	and	
programs	must	be	publicly	available	in	a	way	
that	all	your	analyses	can	be	repeated,	
checked,	and	extended	
– Not	just	sequences	in	GenBank	and	a	statement	
that	you	used	a	par7cular	program	for	analysis!	

–  Include	alignments,	parameter	se^ngs,	scripts	
with	program	se^ngs,	and	informa7on	on	the	
range	of	methods,	models,	and	parameter	se^ngs	
examined.	



Ethics	of	Data	Presenta/on	and	
Analysis	

•  Where	can	you	put	all	this	informa7on?	
– Most	journals	allow	online	Supplementary	
Informa7on	

–  There	may	be	discipline	specific	data	repositories	
(such	as	TreeBase	for	phylogene7c	analyses;	hJp://
hJp://treebase.org)	

–  Public,	archival	databases	such	as	Dryad,	a	digital	data	
repository	(hJp://datadryad.org/)	

–  Individual	websites	are	not	the	best	solu7on,	since	
long-term	access	and	archiving	are	serious	problems	



An	Introduc7on	to	Phylogene7c	
Methods	

•  An	op7mality	criterion	defines	how	we	
measure	the	fit	of	data	to	a	given	solu7on	

•  Tree-searching	is	a	separate	step;	this	is	how	
we	search	through	possible	solu7ons	(which	
we	then	evaluate	with	the	chosen	op7mality	
criterion)	



Phylogene7c	methods	

Three	main	classes	of	op/mality	criteria:	

•Nonparametric	methods:	parsimony	and	
related	approaches	

•Semi-parametric	methods:	pairwise	distance	
approaches	

•Parametric	methods:	Likelihood	and	Bayesian	
approaches	



Advantages	of	each	
	 	 	 	 	•Widely	applicable	to	many	discrete	data	types	
	 	 	 	 				(oGen	used	to	combine	analyses	of	different	data	types)	
	 	 	 	 	•Requires	no	explicit	model	of	evolu7onary	change	
	 	 	 	 	•Computa7onally	rela7vely	fast		
	 	 	 	 	•Rela7vely	easy	interpreta7on	of	character	change	
	 	 	 	 	•Perform	well	with	many	data	sets	

	 	 	 	 	•Can	be	used	with	pairwise	distance	data		
	 	 	 	 				(e.g.,	non-discrete	characters)	
	 	 	 	 	•Can	incorporate	an	explicit	model	of	evolu7on	in	
	 	 	 	 				es7ma7on	of	pairwise	distances	
	 	 	 	 	•Computa7onally	rela7vely	fast		
	 	 	 	 				(especially	for	single-point	es7mates)	

	 	 	 	 	•Fully	based	on	explicit	model	of	evolu7on	
	 	 	 	 	•Most	efficient	method	under	widest	set	of	condi7ons	
	 	 	 	 	•Consistent	(converges	on	correct	answer	with	
	 	 	 	 				increasing	data,	as	long	as	assump7ons	are	met)	
	 	 	 	 	•Most	straighvorward	sta7s7cal	assessment	of	
	 	 	 	 				results;	probabilis7c	assessment	of	ancestral	
	 	 	 	 				character	states	

Parsimony	
			methods	

Pairwise	distance	
		methods	

Likelihood-based	
		methods	



Disadvantages	of	each	
	 	 	 	 	•No	explicit	model	of	evolu7on;	oGen	less	efficient	
	 	 	 	 	•Nonparame7c	sta7s7cal	approaches	for	assessing	
	 	 	 	 				results	oGen	have	poorly	understood	proper7es	
	 	 	 	 	•Can	provide	misleading	results	under	some	fairly	
	 	 	 	 				common	condi7ons	
	 	 	 	 	•Do	not	provide	probablis7c	assessment		
	 	 	 	 					of	alterna7ve	solu7ons	

	 	 	 	 	•Model	of	evolu7on	applied	locally	(to	pairs	of	taxa),	
	 	 	 	 				rather	than	globally	
	 	 	 	 	•Sta7s7cal	interpreta7on	not	straighvorward	
	 	 	 	 	•Can	provide	misleading	results	under	some	fairly	
	 	 	 	 				common	condi7ons	(but	not	as	sensi7ve	as	parsimony)		
	 	 	 	 	•Do	not	provide	probablis7c	assessment		
	 	 	 	 					of	alterna7ve	solu7ons	

	 	 	 	 	•Require	an	explicit	model	of	evolu7on,	which	may	
	 	 	 	 				not	be	realis7c	or	available	for	some	data	types	
	 	 	 	 	•Computa7onally	most	intense	

Parsimony	
			methods	

Pairwise	distance	
		methods	

Likelihood-based	
		methods	



Parsimony	Criterion	

•  Under	the	parsimony	criterion,	the	op7mal	tree	(the	
shortest	or	minimum-length	tree)	is	the	one	that	
minimizes	the	sum	of	the	lengths	of	all	characters	in	terms	
of	evolu7onary	steps	(a	step	is	a	change	from	one	
character-state	to	another).			

•  For	a	given	tree,	find	the	length	of	each	character,	and	
sum	these	lengths;	this	is	the	tree	length.	

•  The	tree	with	the	minimum	length	is	the	most-
parsimonious	tree.			

•  The	most	parsimonious	tree	provides	the	best	fit	of	the	
data	set	under	the	parsimony	criterion.	



Op7mal	versus	True	Tree	

There	is	no	guarantee	that	any	criterion	
will	necessarily	iden7fy	the	“true”	tree.		
These	are	simply	criteria	for	choosing	

which	tree	best	fits	a	dataset	



Op7miza7on	
•  In	parsimony,	this	involves	minimizing	the	number	
of	changes	of	a	character	across	a	tree	(the	length	
of	the	character)	

•  The	op7miza7on	involves	es7ma7ng	the	state	at	
all	internal	nodes.	

•  It	is	possible	for	a	character	to	have	more	than	
one	best	op7miza7on.	
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Weighted	Parsimony	

•  Transforma7ons	among	character-states	do	
not	need	to	be	weighted	equally	

•  Can	account	for	different	weights	between	
transi7ons	and	transversions,	for	example	

•  A	way	to	approximately	incorporate	some	
aspects	of	models	of	evolu7on	



Pairwise	distances	
•  Distances	summarize	character	differences	between	objects	

(terminals,	taxa).	

•  Pairwise	distances	are	computa7onally	quick	to	calculate.	

•  Character	differences	cannot	be	recovered	from	distances,	because	
different	combina7ons	of	character	states	can	yield	the	same	
distance.	

•  Characters	cannot	be	compared	individually,	as	in	discrete	character	
analyses.	

•  The	distances	in	a	matrix	are	not	independent	of	each	other,	and	
errors	are	oGen	compounded	in	fi^ng	distances	to	a	tree.	



Characters 

Taxa 1 2 3 4 5 

one A G C G A 

two A G C G T 

three C T C G T 

four C T C A A 

Start	with	a	data	matrix	of	the	usual	form	



Characters 

Taxa 1 2 3 4 5 

one A G C G A 

two A G C G T 

three C T C G T 

four C T C A A 

one two three four 

one - .2 .6 .6 

two - .4 .8 

three - .4 

four - 

Compute	a	distance	matrix	of	observed	propor/onal	distances	



Intuition of sequence divergence vs evolutionary distance

0.0

1.0

0.0

p-dist

Evolutionary distance �

This can’t be right!



Sequence divergence vs evolutionary distance

0.0

1.0

0.0

p-dist

Evolutionary distance �

the p-dist
“levels o�”



Characters 

Taxa 1 2 3 4 5 

one A G C G A 

two A G C G T 

three C T C G T 

four C T C A A 

one two three four 

one - .2 .6 .6 

two - .4 .8 

three - .4 

four - 

one two three four 

one - .21 .63 .63 

two - .42 .85 

three - .42 

four - 

Transform	the	distance	matrix	
(dij)	into	a	matrix	of	evolu7onary	
(corrected)	distances,	using	a	
model	of	evolu7on	to	account	
for	superimposed	changes	
(reversal,	convergences,	
mul7ple	changes,	etc.).	This	is		
where	the	parametric	model	is	
applied	(to	many	separate	2-taxon	
“trees”).	

Model	of	evolu7on	



one two three four 

one - .21 .63 .63 

two - .42 .85 

three - .42 

four - 

0.105	

0.105	

0.21	
0.20	

0.32	

one	

two	

three	

four	

one two three four 

one - .21 .515 .635 

two - .515 .635 

three - .52 

four - 

Find	the	tree	and	branch	lengths	that	result	in	the	
best	match	(using	an	objec7ve	func7on)	between	the		
corrected	distance	matrix	(dij)	and	the	patris7c	distance	
matrix	(pij)	(the	matrix	of	path-length	distances)	



Op7mality	Criteria	using	Pairwise	
Distances	

•  Two	commonly	used	objec7ve	func7ons:	
–  Fitch-Margoliash	
– Minimum	Evolu7on	

•  The	general	strategy	is	to	find	a	set	of	patris7c	
distances	(path-length	distances)	for	the	branches	
so	as	to	minimize	the	difference	between	the	
evolu7onary	distances	and	the	patris7c	distances.	



Pairwise	Distance	Methods	

•  Fitch-Margoliash	family	

� 

Fit = ω ij dij − pij
α

1≤ i< j<n
∑

i	=	taxon	i	
j	=	taxon	j,	up	to	n	
d	=	evolu7onary	distance	
p	=	patris7c	or	tree	distance	
w 	=	weight	
Exponent:	2	=	least	squares	

1	=	absolute	difference	

Common	weights	
wij	=	1	
wij	=	1/dij	
wij	=	1/d2ij	



Pairwise	Distance	Methods	

•  Minimum	Evolu7on	

� 

Fit = ω ij dij − pij
α

1≤ i< j<n
∑

1.  Use	w	=	1	and	alpha	=	2	to	fit	branch	lengths	li	
2.  Pick	the	tree	that	minimizes	the	sum	of	the	branch	lengths,	L,	over	all	

branches	(this	is	parsimony	in	spirit):		

� 

L = li
i=1

2n−3

∑



Algorithmic	Methods	for	Distance	
Trees	

•  UPGMA--unweighted	pair-group	method	
using	arithme7c	means	

	(not	widely	used	anymore…assumes	

					equal	rates	of	change)	

•	Neighbor-joining--an	approxima7on	
method	for	the	minimum	evolu7on	
criterion	



•  Imagine that we are given a coin, and flip it 
n times, getting h heads: these are our data 
(D) 

•  We can explore various hypotheses (H) 
about the coin, which may have implicit and 
explicit components: 

–  The coin has a ph probability of landing on heads 
–  The coin has a heads side and a tails side 
–  Successive flips of the coin are independent 
–  The flipping process is fair 
–  etc. 

Likelihood 



•  The likelihood (L) is proportional to the probability 
of observing our data, given our hypothesis: 

•  The probability of getting the outcome h heads on n 
flips is given by the binomial distribution: 

Coin flipping 

� 

L(H |D)∝ P(D |H)

(Likelihood score) 

� 

P(h,n | ph ) =
n
h
⎛ 
⎝ ⎜ 
⎞ 
⎠ ⎟ (ph )

h (1− ph )
n−h



•  The expression           gives the binomial 

  coefficients, or the number of different ways to (for 
example) get 4 heads in 10 flips 

•  We can ignore that term to look at the probability of 
a particular sequence of heads and tails (to make it 
more like the case of a particular observed 
sequence of nucleotides) 

Coin flipping 

� 

n
h
⎛ 
⎝ ⎜ 
⎞ 
⎠ ⎟ 



•  Let’s try applying this to some data 
–  Dataset 1 : A particular sequence of 

  H T H T T T H T T H 

•  Assume a particular hypothesis 
–  Try ph = 0.5 

•  This gives us a likelihood score of 

Coin flipping 

� 

L(ph = 0.5 |obs) = (0.5)4 (0.5)6 = 0.000976563



•  What does the likelihood score tell us about the 
likelihood of our hypothesis? In isolation, nothing, 
because the score is dependent on the particular 
data set. The score will get smaller as we collect 
more data (flip the coin more times). 

•  Only the relative likelihood scores for various 
hypotheses, evaluated using the same data, are 
useful to us. 

•  What are some other models? 

Coin flipping 

� 

L(ph = 0.6 |obs) = (0.6)4 (0.4)6 = 0.000530842
L(ph = 0.4 |obs) = (0.4)4 (0.6)6 = 0.001194394
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The log likelihood surface 
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Other	data	
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Likelihood 
•  Likelihood (H|D) is proportional to P (D|H) 
•  Components of the hypothesis can be explicit and 

implicit 
•  Only relative likelihoods are important in evaluating 

hypotheses 
•  The point on the likelihood curve that maximizes the 

likelihood score (the MLE) is our best estimate given the 
data at hand 

•  Likelihood scores shouldn’t be compared between 
datasets 

•  More data lead to more peaked surfaces (i.e., better 
ability to discriminate among hypotheses) 



Likelihood	in	Phylogene7cs	

•  In	phylogene7cs,	the	data	are	the	observed	characters	(e.g.,	DNA	
sequences)	as	they	are	distributed	across	taxa	

•  The	hypothesis	consists	of	the	tree	topology,	a	set	of	specified	branch	
lengths,	and	an	explicit	model	of	character	evolu7on.		

•  Calcula7ng	the	likelihood	score	for	a	tree	requires	a	very	large	number	
of	calcula7ons		



Bayesian	Approaches	

•  Take	prior	informa7on	into	account	

P(A|B)	=		 P(B|A)			P(A)	
P(B)	

(Bayes	Theorem)	

Reverend	Thomas	Bayes,	1701-1761	



Bayesian	Approaches	

•  Take	prior	informa7on	into	account	

P(A|B)	=		 P(B|A)				P(A)	
P(B)	

Posterior	probability	



Bayesian	Approaches	

•  Take	prior	informa7on	into	account	

P(A|B)	=		 P(B|A)				P(A)	
P(B)	

				The	support	that	B	provides	for	A	



Bayesian	Approaches	

•  Take	prior	informa7on	into	account	

P(A|B)	=		 P(B|A)				P(A)	
P(B)	

			Prior	informa7on	about	A	
(the	ini7al	expecta7on	for	A)	



Bayesian	Approaches	

•  An	example:	



What	determines	the	accuracy	of	
phylogene7c	es7mates?	

•  Op7mality	criterion	(likelihood-based	methods	
have	best	performance,	as	long	as	
assump7ons	of	model	are	met)	



What	determines	the	accuracy	of	
phylogene7c	es7mates?	

•  Op7mality	criterion	(likelihood-based	methods	
have	best	performance,	as	long	as	
assump7ons	of	model	are	met)	

•  Model	selec7on	(finding	an	appropriate	model	
of	evolu7on	for	the	data	at	hand)	



What	determines	the	accuracy	of	
phylogene7c	es7mates?	

•  Op7mality	criterion	(likelihood-based	methods	
have	best	performance,	as	long	as	
assump7ons	of	model	are	met)	

•  Model	selec7on	(finding	an	appropriate	model	
of	evolu7on	for	the	data	at	hand)	

•  Thoroughness	of	tree	search	(finding	best	
solu7ons)	



What	determines	the	accuracy	of	
phylogene7c	es7mates?	

•  Op7mality	criterion	(likelihood-based	methods	
have	best	performance,	as	long	as	assump7ons	of	
model	are	met)	

•  Model	selec7on	(finding	an	appropriate	model	of	
evolu7on	for	the	data	at	hand)	

•  Thoroughness	of	tree	search	(finding	best	
solu7ons)	

•  Sampling	density	of	genes	(more	genes	provide	
more	informa7on,	and	allow	resolu7on	of	species	
trees	from	gene	trees)	



What	determines	the	accuracy	of	
phylogene7c	es7mates?	

•  Op7mality	criterion	(likelihood-based	methods	have	
best	performance,	as	long	as	assump7ons	of	model	are	
met)	

•  Model	selec7on	(finding	an	appropriate	model	of	
evolu7on	for	the	data	at	hand)	

•  Thoroughness	of	tree	search	(finding	best	solu7ons)	
•  Sampling	density	of	genes	(more	genes	provide	more	
informa7on,	and	allow	resolu7on	of	species	trees	from	
gene	trees)	

•  Sampling	density	of	taxa	(more	thorough	taxon	
sampling	produces	beJer	es7mates	of	parameters	and	
results	in	beJer	es7mates	of	trees)	




